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Abstract 

This paper provides background on the Fellegi-Sunter model of record linkage for identifying duplicates 

within and across files, background on the Fellegi-Holt model of statistical data editing for filling in 

missing data, and an overview of methods of adjusting statistical analyses for record linkage error.  It also 

provides new examples of the severe errors that can occur in statistical analyses when there is record 

linkage error. 
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1.  Introduction 

The national statistical agencies have long been at the forefront of methods of cleaning up data.  The 

earliest methods were manual; later generalized systems based on the record linkage model of Fellegi and 

Sunter (1969) and the model of statistical data editing of Fellegi and Holt (1976) were developed 

independently in a number of agencies.  More recently, the agencies have been interested in cleaning up 

national files which has required speed increases of the basic software on the order of 100 or more.  With 

the faster software, a group of skilled individuals can do clean-up of a set of national files and preliminary 

analyses in 3-6 months; with software that is 100+ times slower (such as most commercial and 

experimental university software), it is not clear how long the clean-up would take. 

  In this paper, we do not go into detail about the speed increases of the generalized software that are 

covered in Winkler, Yancey, and Porter (2010) and Winkler (2008, 2010).  We rather describe the 

methods which are primarily intended to produce quality analyses in sets of national files. 

   Record linkage (entity resolution) is the method of bringing together records associated with the same 

entity using quasi-identifiers such as name, address, date-of-birth, etc.  While individual quasi-identifiers 

do not uniquely identify entities, a combination of quasi-identifiers may uniquely identify an entity such 

as a person.  The quality of the information (quasi-identifiers) are crucial to the quality of record linkage 

(i.e., low false match error rates, possibly low false nonmatch error rates).   

   Because files (particularly large national files) can yield useful information in statistical analyses, 

various groups are interested in cleaning-up and merging individual files and (possibly) doing additional 

clean-up of merged files to correct for linkage error. 

    A conceptual picture would link records in file A = (ai, …, an, x1, …, xk)  with records in file 

B = (b1, …, bm, x1, …, xk)  using common identifying information (x1, …, xk) to produce the merged file 

A  B = (ai, …, an, b1, …, bm) for analyses.  The variables x1, …, xk are quasi-identifiers such as names, 

addresses, dates-of-birth, and even fields such as income (when processed and compared in a suitable 

manner).  Individual quasi-identifiers will not uniquely identify correspondence between pairs of records 

associated with the same entity; sometimes combinations of the quasi-identifiers may uniquely identify.  

Survey files routinely require cleanup via edit/imputation and administrative files may also require similar 

cleanup.  If there are errors in the linkage, then completely erroneous (b1, …, bm)  may be linked with a 

given (ai, …, an) and the joint distribution of (ai, …, an, b1, …, bm) in A  B may be very seriously 

compromised.  If there is inadequate cleanup (i.e., effective edit/imputation) of A = (ai, …, an, x1, …, xk)  
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and B = (b1, …, bm, x1, …, xk) , then analyses may have other serious errors in addition to the errors due 

to the linkage errors.    

   In this paper, we provide some background on the Fellegi-Sunter model of record linkage, methods of 

file clean-up and preparation prior to linkage, the Fellegi-Holt model of statistical data editing, current 

(very primitive) models to estimating record linkage error rates and models for adjusting statistical 

analyses for linkage error.  A new example mimics larger situations that might typically be encountered in 

practice and illustrates how poorly existing methods perform. 

 

2.  Background, Methods, Current Research Problems 

In the first subsection, we provide background on the Fellegi-Sunter model of record linkage.  In the 

second, we provide an overview of preprocessing/standardization which can represent a 0.75 proportion 

of improved matching efficacy.  Without the preprocessing/standardization, improving models and 

parameter estimation to yield reasonable improvements in methods of adjusting statistical analyses for 

linkage error would be impossible.  In the third subsection, we give a brief overview of the Fellegi-Holt 

model of statistical data editing.  In the fourth subsection, we provide a full likelihood development for 

the models of this paper that also holds (with a substantial change in notation) for the model of 

Chipperfield et al. (2011).  The advantage of the subsection’s model is that it is based on theory (Winkler 

1993) generalizing the linear constraints of Meng and Rubin (1993) to convex constraints which may 

improve some of the methods of adjusting statistical analyses for linkage error as they do with general 

edit/imputation (Winkler 2008, 2010).  The fourth subsection describes some of the previous work on 

adjusting statistical analyses for linkage error.  The fifth subsection covers the methods of Chipperfield et 

al. (2011) and applies them to more realistic situations than have been used by prior authors of methods 

on statistical adjustment methods for linkage error. 

 

2.1.  The Fellegi-Sunter Model of Record Linkage 

Fellegi and Sunter (1969) provided a formal mathematical model for ideas that had been introduced by 

Newcombe et al. (1959, 1962).  They introduced many ways of estimating key parameters without 

training data.  To begin, notation is needed.  Two files A and B are matched.  The idea is to classify pairs 

in a product space A  B from two files A and B into M, the set of true matches, and U, the set of true 

nonmatches.  Fellegi and Sunter, making rigorous concepts introduced by Newcombe (1959), considered 

ratios of probabilities of the form: 

 

      R =  P( γ  Γ | M) / P( γ   | U)                                                                        (1)   

 

where γ is an arbitrary agreement pattern in a comparison space Γ.  For instance, Γ might consist of eight 

patterns representing simple agreement or not on the largest name component, street name, and street 

number.  Alternatively, each γ  Γ might additionally account for the relative frequency with which 

specific values of name components such as "Smith" and "Zabrinsky” occur.  Then P(agree “Smith” | M) 

< P(agree last name | M) < P(agree “Zabrinsky” | M) which typically gives a less frequently occurring 

name like “Zabrinsky” more distinguishing power than a more frequently occurring name like “Smith” 

(Fellegi and Sunter 1969, Winkler 1995).  Somewhat different, much smaller, adjustments for relative 

frequency are given for the probability of agreement on a specific name given U.  The probabilities in (1) 

can also be adjusted for partial agreement on two strings because of typographical error (which can 

approach 50% with scanned data (Winkler 2004)) and for certain dependencies between agreements 

among sets of fields (Larsen and Rubin 2001, Winkler 2002).  The ratio R or any monotonely increasing 

function of it such as the natural log is referred to as a matching weight (or score). 

 

The decision rule is given by: 

 

   If R > T, then designate pair as a match. 



 

   If T  R  T, then designate pair as a possible match 

        and hold for clerical review.                                                                                  (2) 

 

   If  R < T, then designate pair as a nonmatch. 

 

The cutoff thresholds T and T are determined by a priori error bounds on false matches and false 

nonmatches.  Rule (2) agrees with intuition.  If γ Γ consists primarily of agreements, then it is intuitive 

that γ Γ would be more likely to occur among matches than nonmatches and ratio (1) would be large.  

On the other hand, if γ Γ consists primarily of disagreements, then ratio (1) would be small.  Rule (2) 

partitions the set γ  Γ into three disjoint subregions.  The region T  R  T is referred to as the no-

decision region or clerical review region.  In some situations, resources are available to review pairs 

clerically. 

   Fellegi and Sunter (1969, Theorem 1) proved the optimality of the classification rule given by (2).  

Their proof is very general in the sense in it holds for any representations γ  Γ over the set of pairs in the 

product space A  B from two files.  As they observed, the quality of the results from classification rule 

(2) were dependent on the accuracy of the estimates of P( γ  Γ | M) and P( γ  Γ | U).   

   Figure 1 provides an illustration of the curves of log frequency versus log weight for matches and 

nonmatches, respectively.  The two vertical lines represent the lower and upper cutoffs thresholds T and 

T, respectively.  The x-axis is the log of the likelihood ratio R given by (1).  The y-axis is the log of the 

frequency counts of the pairs associated with the given likelihood ratio.  The plot uses pairs of records 

from a contiguous geographic region that was matched in the 1990 Decennial Census.  The clerical 

review region between the two cutoffs primarily consists of pairs within the same household that are 

missing both first name and age (the only two fields that distinguish individuals within a household). 

 

 
 

For the 1990 Decennial Census, we had to estimate specific parameters in each of 457 regions.  The 

clerical review region consisted almost entirely of individuals within the same household who were 

missing both first name and age (the only two fields for distinguishing individuals within a household). 

 

2.2.  Data Preparation 

The methods for cleaning up data prior to the data being run through the matching routines account for 

between 50% and 75% of matching efficacy; improved parameter estimation account for the remaining 



improvement in matching efficacy.  To facilitate the preprocessing, individuals need to assure that names 

and addresses are broken into corresponding components for comparison, that dates and other fields are in 

forms that can be compared directly with appropriate algorithms, and that minor typographical error and 

its effect on the likelihoods is dealt with automatically. 

 

 
Table 1.   Examples of Name Parsing 

                           

       Standardized____         

 

 1.  DR John J Smith MD    

 2.  Smith DRY FRM 

 3.  Smith & Son ENTP__      

 

 

                 Parsed_____________________                      

    PRE FIRST MID LAST  POST1 POST2 BUS1 BUS2     

 1. DR  John    J Smith  MD 

 2.               Smith             DRY  FRM 

 3.               Smith       Son   ENTP_____       

 

 

The name standardization (Table 1) and the address standardization (Table 2) are absolutely crucial to 

accurate matching.  Although there are much more advanced methods of standardization (Agichtein and 

Gani 2004; Cohen and Sarawagi 2004), we do not need the methods for most types of high quality person 

lists. 

 

 
Table 2.  Examples of Address Parsing 

                           

       Standardized 

                         _ 

 1.  16 W Main ST APT 16   

 2.  RR 2 BX 215 

 3.  Fuller BLDG SUITE 405   

 4.  14588 HWY 16 W_______        

                                                              

 

                            Parsed___________________________                             

     Pre2 Hsnm  Stnm   RR Box  Post1 Post2 Unit1 Unit2  Bldg__   

 

 1.  W    16    Main             ST          16                 

 2.                     2  215 

 3.                                              405    Fuller 

 4.       14588 HWY 16                 W______________________    

 

 

 

 

 

 

 

 



Table 3.  Different Date Formats 

 

April 15, 1960 

1960Apr15 

04/15/1960 
 

 

Table 4.  Examples of Fields having Minor Typographical Error 

 

F1a     William 

F1b    Willam 

 

F2a     Roberta 

F2b    Rburta 

 

F3a    Jones 

F3b    Janes 

 

 

2.3  Basic Parameter Estimation and Error-rate Estimation 

The development in this section is due to that of Winkler (1988) and extended to semi-supervised learning 

in Winkler (2002).  The notation is slightly more general because it deals with the representational 

framework of record linkage.  The underlying computational algorithms are almost identical to those in 

Chipperfield et al. (2011).  Let i be the agreement pattern associated with pair pi.  Classes Cj are an 

arbitrary partition of the set of pairs D in A  B.  Later, we will assume that some of the Cj will be subsets 

of M and the remaining Cj are subsets of U.  Specifically,  

 

  P(i | ) = i 
|C|

 P(i | Cj; ) P(Cj ;  )                                                          (3) 

 

where (i is a specific pair, Cj is a specific class, and the sum is over the set of classes.  Under the Naïve 

Bayes or conditional independence (CI), we have 

 

   P(i | Cj ; ) =  k  P(i,k | Cj ; )                                                                         (4) 

 

where the product is over the k
th
 individual field agreement ik in pair agreement pattern i.  In some 

situations, we use a Dirichlet prior 

 

  P() =  j ( Cj )
-1

    k  (  i,k | Cj )
 -1

                                                               (5) 

 

where the first product is over the classes  Cj and the second product is over the fields.  We use Du to 

denote unlabeled pairs and Dl to denote labeled pairs.  Given the set D of all labeled and unlabeled pairs, 

the log likelihood is given by 

 

  lc( | D; z) =  log ( P())  + 

      (1- )  iDu   j zij log (P(i | Cj ; )  P(Cj ; )) + 

      iDl  j zij log (P(i | Cj ; )  P(Cj ; )).                                                       (6) 

 

where 0    1.  The first sum is over the unlabeled pairs and the second sum is over the labeled pairs. 

   In the third terms equation (6), we sum over the observed zij.  In the second term, we put in expected 

values for the zij based on the initial estimates P(i | Cj; ) and P(Cj; ). After re-estimating the 



parameters P(i | Cj; ) and P(Cj; )) during the M-step (that is in closed form under condition (CI)), we 

put in new expected values and repeat the M-step.  The computer algorithms are easily monitored by 

checking that the likelihood increases after each combination of E- and M-steps and by checking that the 

sum of the probabilities add to 1.0.  We observe that if  is 1, then we only use training data and our 

methods correspond to naïve or general Bayes methods in which training data are available.  If  is 0, 

then we are in the unsupervised learning situations of Winkler (1988).  

   Belin and Rubin (1995) were the first to provide an (reasonably accurate) unsupervised method of 

estimating false match rates.  Larsen and Rubin (2001) later used semi-supervised learning and MCMC 

methods to provide false match rate estimates.  Winkler (2002) used EM methods to provide estimates of 

false match rates  that were very slightly less accurate than those of Larsen and Rubin (2001) but for 

which computation was 100 times as fast (10 minutes per estimate).  The additional speed was needed 

because the methods needed to be applied in ~500 regions into which Decennial Census matching had to 

be performed in 3-6 weeks.  Winkler (2006a) provided unsupervised methods that improved over Belin 

and Rubin (1995) because he was able to create data structures that accounted for more of the 

relationships between records than had been available for Belin and Rubin.  The Winkler (2006a) 

unsupervised methods were somewhat worse than the semi-supervised methods of Larsen and Rubin 

(2001) and Winkler (2002).  Winkler (2004) provided methods of false nonmatch error rate estimation. 

 

2.4.  The Fellegi-Holt Model of Statistical Data Editing 

In this section we provide background on classical edit/imputation that uses hot-deck and provide a 

description of how hot-deck was assumed to work by practitioners.  As far as we know, there has never 

been a rigorous development that may justify some of the assumed properties of hot-deck.  We also 

provide background methods of creating loglinear models Y (Bishop, Fienberg and Holland 1975) that 

are straightforward to apply to general discrete data, background on general methods of imputation and 

editing for missing data under linear constraints that extend the basic methods and can also be 

straightforward to apply, and an elementary review of the EM algorithm.  The application of the general 

methods and software is straightforward.  The application can be done without any modifications that are 

specific to a particular data file or analytic use. 

   The intent of classical data collection and clean-up was to provide a data file that was free of logical 

errors and missing data.  For a statistical agency, a survey form might be filled out by an interviewer 

during a face-to-face interview with the respondent.  The ‘experienced’ interviewer would often be able to 

‘correct’ contradictory data or ‘replace’ missing data during the interview.  At a later time analysts might 

make further ‘corrections’ prior to the data being placed in computer files.  The purpose was to produce a 

‘complete’ (i.e., no missing values) data file that had no contradictory values in some variables.  The final 

‘cleaned’ file would be suitable for various statistical analyses.  In particular, the statistical file would 

allow determination of the proportion of specific values of the multiple variables (i.e., joint inclusion 

probabilities). 

    Naïvely, dealing with edits is straightforward.  If a child of less than sixteen years old is given a marital 

status of ‘married’, then either the age associated with the child might be changed (i.e., to older than 16) 

or the marital status might be changed to ‘single’.  The difficulty consistently arose that, as a 

(computerized) record r0 was changed to a different record r1 by changing values in fields in which edits 

failed, then the new record r1 would fail other edits that the original record r0 had not failed. 

   Fellegi and Holt (1976) were the first to provide an overall model to assure that a changed record r1 

would not fail edits.  Their theory required the computation of all implicit edits that could be logically 

derived from an originally specified set of ‘explicit’ edits.  If the implicit edits were available, then it was 

always possible to change an edit-failing record r0 to an edit passing record r1.  The availability of 

‘implicit’ edits makes it quite straightforward and fast to determine the minimum number of fields to 

change in an edit-failing record r0 to obtain an edit-passing record r1 (Barcaroli and Venturi 1997).  

Further, Fellegi and Holt indicated how hot-deck might be used to provide the values for filling in 

missing values or replacing contradictory values.  As shown in Winkler (2008), hot-deck is not generally 

suitable for filling in missing values in a manner that yields records that satisfy edits and preserve joint 



distributions.  Indeed, the imputation methods in use at a variety of statistical agencies and those that are 

also being investigated do not assure that aggregates of records satisfy joint distributions and that 

individual records satisfy edits. 

   The intent of filling-in missing or contradictory values in edit-failing records r0 is to obtain a records r1 

that can be used in computing the joint probabilities in a principled manner.  The difficulty that had been 

observed by many individuals is that a well-implemented hot-deck does not preserve joint probabilities.   

Rao (1997) provided a theoretical characterization of why hot-deck fails even in two-dimensional 

situations.  The failure occurs even in ‘nice’ situations where individuals had previously assumed that hot-

deck would work well.  

   In a real-world survey situation, subject matter ‘experts’ may develop hundreds or thousands of if-then-

else rules that are used for the editing and hot-deck imputation.  Because it is exceptionally difficult to 

develop the logic for such rules, most edit/imputation systems do not assure that records satisfy edits or 

preserve joint inclusion probabilities.  Further, such systems are exceptionally difficult to implement 

because of (1) logic errors in specifications, (2) errors in computer code, and (3) no effective modeling of 

hot-deck matching rules.  As demonstrated by Winkler (2008), it is effectively impossible with the 

methods (classical if-then-else and hot-deck) that many agencies use to develop edit/imputation systems 

that preserve either joint probabilities or that create records that satisfy edit restraints.  This is true even in 

the situations when Fellegi-Holt methods are used for the editing and hot-deck is used for imputation. 

   An edit/imputation system that effectively uses the edit ideas of Fellegi and Holt (1976) and modern 

imputation ideas (such as in Little and Rubin 2002) has distinct advantages.  First, it is far easier to 

implement (as demonstrated in Winkler 2008).  Edit rules are in easily modified tables, and the logical 

consistency of the entire system is tested automatically according the mathematics of the Fellegi-Holt 

model and additional requirements on the preservation of joint inclusion probabilities (Winkler 2003).  

Second, the optimization that determines the minimum number of fields to change or replace in an edit-

failing record is in a fixed mathematical routine that does not need to change.  Third, imputation is 

determined from a model (limiting distribution).  Most modeling is very straightforward.  It is based on 

variants of loglinear modeling and extensions of missing data methods that is contained in easily applied, 

extremely fast computational algorithms (Winkler 2006b, 2008; also 2010).  The methods create records 

that always satisfy edits and preserve joint inclusion probabilities. 

   The generalized software (Winkler 2010) incorporates ideas from statistical matching software (Winkler 

2006b) that can be compared to ideas and results of D’Orazio et al. (2006) and earlier discrete-data 

editing software (Winkler 2008) that could be used for synthetic-data generation (Winkler 2010).  The 

basic methods are closely related to ideas suggested in Little and Rubin (2002, Chapter 13) in that they 

assume a missing-at-random assumption that can be slightly weakened in some situations (Winkler 2008, 

2010).  The original theory for the computational algorithms (Winkler 1993) uses convex constraints 

(Winkler 1990) to produce an EMH algorithm that generalizes the MCECM algorithm of Meng and 

Rubin (1993).  The EMH algorithm was first applied to record linkage (Winkler 1993) and used by 

D’Orazio, Di Zio, and Scanu (2006) in statistical matching. 

   The current algorithms do the EM fitting as in Little and Rubin (2002) but with computational 

enhancements that scale subtotals exceedingly rapidly and with only moderate use of memory.  The 

computational speed for a contingency table of size 600,000 is 50 seconds and for a table of size 0.5 

billion cells in approximately 1000 minutes (each with epsilon 10^-12 and 200 iterations).  In the larger 

applications, 16 Gb of memory are required.  The key to the speed is the combination of effective 

indexing of cells and suitable data structures for retrieval of information so that each of the respective 

margins of the M-step of EM-fitting are computed rapidly.   

   Certain convex constraints can be incorporated in addition to the standard linear constraints of classic 

loglinear EM fitting.  In statistical matching (Winkler 2006b) was able to incorporate closed form 

constraints P(Variable X1 = x11 > Variable X1= x12) with the same data as D’Orazio et al. (2006) that 

needed a much slower iterative fitting algorithm for the same data and constraints.  The variable X1 took 

four values and the restraint is that one margin of X1 for one value is restricted to be greater than one 

margin of another value.  For general edit/imputation, Winkler (2008) was able to put marginal 



constraints on one variable to assure that the resultant micordata files and associated margins 

corresponded much more closely to observed margins from an auxiliary data source.  For, instance one 

variable could a an income range and the produced microdata did not produce population proportions that 

corresponded closely to published IRS data until after appropriate convex constraints were additionally 

applied.  Winkler (2010) used convex constraints to place upper and lower bounds on cell probabilities to 

assure that any synthetic data generated from the models would have reduced/eliminated re-identification 

risk while still preserving the main analytic properties. 

   A nontrivially modified version of the indexing algorithms allows near instantaneous location of cells in 

the contingency table that match a record having missing data.   An additional algorithm nearly 

instantaneously constructs an array that allows binary search to locate the cell for the imputation (for the 

two algorithms: total < 1.0 millisecond cpu time).  For instance, if a record has 12 variables and 5 have 

missing, we might need to delineate all 100,000+ cells in a contingency table with 0.5 million or 0.5 

billion cells and then draw a cell (donor) with probability-proportional-to-size (pps) to impute missing 

values in the record with missing values.  This type of imputation assures that the resultant ‘corrected’ 

microdata have joint distributions that are consistent with the model.  A naively written SAS search and 

pps-sample procedure might require as much as a minute cpu time for each record being imputed. 

   For imputation-variance estimation, other closely related algorithms allow direct variance estimation 

from the model.  This is in contrast to after-the-fact variance approximations using linearization, jackknife 

or bootstrap.  These latter three methods were developed for after-the-fact variance estimation (typically 

with possibly poorly implemented hot-deck imputation) that are unable to account effectively for the bias 

of hot-deck or that lack of model with hot-deck.  Most of the methods for the after-the-fact imputation-

variance estimation have only been developed for one-variable situations that do not account for the 

multivariate characteristics of the data and assume that hot-deck matching (when naively applied) is 

straightforward when most hot-deck matching is never straightforward. 

 

2.5.  Current Models for Adjusting Statistical Analyses for Linkage Error 

The first model for adjusting a regression analysis for linkage error is due to Scheuren and Winkler 

(1993).  By making use of the Belin-Rubin predicted false-match rates, Scheuren and Winkler were able 

to give (somewhat crude) estimates of regressions that had been adjusted for linkage error to correspond 

more closely with underlying ‘true’ regressions that did not need to account for matching error.  All 

papers subsequent to Scheuren and Winkler have assumed that accurate values of false match rates 

(equivalently true match probabilities) are available for all pairs in A × B.  The difficulty in moving the 

methods into practical applications is that nobody has developed suitably accurate methods for estimating 

all false match rates for all pairs in A × B when no training data is available.   

   Lahiri and Larsen (2005) later extended the model of Scheuren and Winkler with a complete theoretical 

development. In situations where the true (not estimates) matching probabilities were available for all 

pairs, the Lahiri-Larsen methods outperformed Scheuren-Winkler methods and were extended to more 

multivariate situations than the methods of Scheuren and Winkler (1993).  Variants of the models for 

continuous data are due to Chambers (2009) and Kim and Chambers (2012a,b). using estimating 

equations.  The estimating equation approach is highly dependent on the simplifications that Chambers et 

al. made for the matching process. 

   Chipperfield et al. (2011) provided  methods of extending analyses on discrete data.  The Chipperfield 

et al. methods are closely related to Winkler (2002) which contains a full likelihood development.  

Trancredi and Liseo (2011) applied Bayesian MCMC methods to discrete data. The Trancredi-Liseo 

methods are exceptionally impressive because of the number of simultaneous restraints with which they 

can deal.  The Trancredi-Liseo methods are extraordinarily compute intense (possibly requiring as much 

as 3 hours computation on each block (approximately 50-100 households).  There are millions of blocks 

in the U.S. 

  Goldstein et al. (2012) provide MCMC methods for adjusting analyses based on very general methods 

and software that they developed originally for imputation (Goldstein et al. 2009).  They provide methods 

of estimating the probabilities of pairs based on characteristics of pairs from files that have previously 



been matched.  They are able to leverage relationships between vector x A to y  B based on a subset of 

pairs on which matching error is exceptionally small and then extend the relationships/matching-

adjustments to the entire set of pairs in A × B.  Although we have not encountered situations similar to 

Goldstein et al. (2012) where estimates of matching probabilities are very highly accurate and where we 

can obtain highly accurate estimates of relationships for (x, y) pairs on A × B (particularly from previous 

matching situations), the Goldstein et al. methods are highly promising, possibly in combination with 

another method. 

   The methods for adjusting regression analyses for linkage error have been more successful than the 

methods for adjusting statistical analyses of discrete data because of various inherent simplifications due 

to the form of regression models.   

   Because the model of Chipperfield et al. (2011) is straightforward and deals with discrete data, we 

describe it prior to going to the examples that illustrate the extreme difficulties of having linkage-error-

adjustment models that effectively deal with data that might be appropriately described as real-world. 

 

2.6.  Errors in Statistical Analyses due to Linkage Error of Discrete Data 

The natural way of analyzing discrete data is with loglinear models on the pairs of records in A × B.  For 

consistency with Chipperfield et al. (2011) we follow their notation as consistently as possible.  Rather 

than break out A and B as (a1, …, an) and (b1, …, bm), we merely enumerate A with x in A and B with y in 

B.  All observed pairs have probabilities pxy where pxy represents all pairs of records in A × B with x in A 

and y in B.  If we knew the truth, we would know all the pxy.  We wish to estimate the pxy in a semi-

supervised fashion as with the likelihood equation given in (6).  Chipperfield et al. (2011) take a sample 

of pairs sc for which they can determine pxy exactly (no estimation error) for all pairs x and y associated 

with sc. 

   As preliminary notation, we describe contingency tables without the missing data. We assume that x 

takes G values and y takes C values.  Then, the joint distribution of x and y is 

 

 p(x, y) = p1(y | x, ) p2 (x) 

 

where  = (’1, …, ’_)’, (’g = ((’1|g, …,  ’C|g )’, ’c|g is the probability the given x = g that y = c.  

The total number of probabilities p(x, y) is CG.  Each p(x,y) is obtained by summing over all pairs pi(x,y) 

where x in A (first component) and y in B (second component).  The standard estimate of  

 

 c|x = nc|x/nx), where   nx = c i  wic|x, where wic|x = 1 if yi = c and xi = x and  

wic|x = 0 otherwise. 

 

 

When there is linkage error, we are concerned with methods that adjust for linkage error.  If we can 

observe true matching status, then the underlying truth representation is. 

 

 w*ic|x = 1 if y*i = c, and xi = x; else w*ic|x = 0. 

 

Ordinarily, we may need to take a (possibly very large) sample to get at the truth and use the following 

semi-supervised learning procedure. 

 

   Take a (likely very large) sample sc to get (possibly only somewhat) good estimates of  w*ic|x .  Use EM 

model to get estimates for all   xy.  The sample sc gives  

 

         xy* = (sc w*ic|x  i )/ (sc w*ic|x).                                         (7) 

 

 



       c|x =   c|x/(c   c|x)
-1

,                                                              (8) 

 

where  

 

         c|x =  i   ic|x,                                                                      (9) 

 

         ic|x = w*ic|x    xy* + (1-   xy*)  c|x if i  sc, 

 

                 =  w*ic|x  if  i sc                                                        (10) 

 

                 =   c|x if  i sc    and i = 0  (i  is indicator that true match), 

 

  

The (semi-supervised) EM procedure is  

 

1.  Calculate   xy* from (7), 

2.  Initialize      
   

 and then calculate      
   

 from (10) and then      
   

from (9),  

3.  Calculate      
   

 from (8) using      
     

,  

4.  Calculate      
   

 from (10) using      
   

 and then calculate      
   

from (9)  

     using      
   

, 

5.  Iterate between 3 and 4 until convergence. 

 

 

   A similar semi-supervised procedure (with full likelihood development) was used in Winkler (2002) 

and extended to an unsupervised procedure (Winkler 2006a) with a substantial decrease in accuracy for 

estimating false match rates.  With very slight notational changes, the procedure given in steps 1-5 above 

is the same as the approach using the likelihood given by equation (6). 

 

   The procedure of Chipperfield et al. (2011) appears to work well in their simple empirical examples that 

have substantial similarity to Winkler (2002) but the methods of Chipperfield et al. are more directly 

generalizable. 

 

Empirical example (Chipperfield et al. 2011): 

Three values (employed, unemployed, not in labor force) are compared against same values in another 

file for a later time period.  The total sample size 1000 which represents ~100 for each combination of 

cells across time periods.  With Chipperfield et al., there is very little variation between the 3 labor-force 

values in one time period to another.  There are only 3 × 3 possible patterns.  With more realistic data, we 

might have thousands or millions of patterns.  Each false match (x, y) might associate a completely 

unrelated y  B that is chosen approximately randomly from thousands of B records .  

 

3.  Empirical Data 

The empirical data consists of 55926 records from on State (1% sample) from a public-use file.  In the 

following diagram, we have collapsed a number of the value-states of fields into a smaller number of 

value-states to make the analysis easier.  There are approximately 1.5 million possible data patterns.  

Even if this relatively straightforward situation, it will be apparent that it is very difficult to extend the 

existing statistical-adjustment procedures to achieve high or moderate accuracy with complicated real 

data. 

 



 

 

 

 

Table 5.  Data (2000 PUMS data for one State) 

               (Number of values for each field) 

 

-------- A data -------------     --------  B data ------ 

Sex  age  race  marit  educ  occup  house  income 

  2      16    2       5        16       3         5        40 

 

  2560 data patterns                    600 data patterns            

 

 

   Matching error (Table 6) was induced at the following rate in parts of the file at rates that might 

correspond to a ‘good’ matching situation with certain types of real data.  We only consider the simplest 

situation where each x A will either be matched with the correct y  B or not.  With this simplification, 

each matching error represents a type of permutation of the records with y  B.  Different authors 

(Scheuren and Winkler 1993, Lahiri and Larsen 2005) have suggested methods for extending methods to 

the situations where some x A do not have a corresponding  y  B and vice versa.  Chambers (2009) 

and Kim and Chambers (2012a,b) have given specific extensions along with empirical simulations with 

continuous but we will not consider any extensions in this paper. 

   The last column in Table 7 represents the counts after distortion due to matching error.  The next-to-last 

column are the counts prior to matching error (i.e., truth).  The first eight columns are associated with the 

values (0, …, nj-1) associated with the nj values associated with the j
th
 field.  Higher truth counts are 

usually reduced in the observed data due to matching error.  When an initial value (9
th
 column is blank) 

followed by 1 it is because a new matching pattern is created as a result of matching error.  

Approximately 16,000 (20% of the counts) have 1 in the 10
th
 column of which 1/7 are false matches.  

There is no way to distinguish these false matches (presently) except via follow-up of a sample.  The 

counts in the 10
th
 column are such that the loglinear models associated with the initial (true) counts are 

quite different than the models associated with the final counts (that have no correction for matching 

error). 

 

 

Table 6.  Sampling Rates by Strata 

 

Split records – induce matching error 

(overall matching error 8-10%) 

1.   8000   0.01 error 

2.   8000   0.02 error 

3.   8000   0.05 error 

4    8000   0.08 error 

5.   8000   0.12 error 

6.   8000   0.15 error 

7.   7926   0.20 error 

 

 

 

 

 

 



 

 

 

 

Table 7.  Sample Data Records  

(Counts for true patterns followed by observed patterns) 

                                                              True      Observed 
1 020 1  5 07 00 00 000      53      50 

1 020 1  5 07 00 00 001       3       5 

1 020 1  5 07 00 00 004       .       1 

1 020 1  5 07 00 00 006       .       1 

1 020 1  5 07 00 01 001       1       . 

1 020 1  5 07 00 02 000       1       1 

1 020 1  5 07 00 02 001       2       2 

1 020 1  5 07 00 04 001       .       1 

1 020 1  5 07 00 04 004       .       1 

1 020 1  5 07 00 04 005       1       1 

1 020 1  5 07 00 05 001       1       1 

1 020 1  5 07 00 05 005       .       1 

1 020 1  5 07 00 05 006       .       1 

1 020 1  5 07 00 05 007       .       1 

1 020 1  5 07 05 00 000      16      12 

1 020 1  5 07 05 00 001       1       1 

1 020 1  5 07 05 00 004       .       1 

1 020 1  5 07 05 01 000      18      17 

1 020 1  5 07 05 01 001       3       3 

1 020 1  5 07 05 02 000      32      29 

 

 

 

4.  Discussion 

Observations: 

1.  The empirical counts from the observed data Obs with the specified distortions vary significantly from 

the original data Orig.  The loglinear models on Obs and Orig are very different.   

2.  The empirical example might have 2560 data patterns in one file and 600 data patterns in another file.  

This would correspond to a relatively small administrative-list example.  If the sample size is 0.01 of A × 

B, then most small cells with counts 3 or less will be given   xy*= 0.  It seems unlikely that this will yield 

suitable estimates of cell counts to improve loglinear modeling.  Without correction for matching error, 

this data does not yield loglinear models that correspond to the loglinear models from the original ‘truth’ 

data.  This means that, due to matching error (8-10%), we cannot reproduce analyses on the original data 

(even approximately) on the observed data. 

3.  If the sample size is 0.25-0.50 of the total number of pairs, then too many pairs will need to be 

reviewed for this procedure to work in practice.  Even with a sample size with a proportion on the order to 

0.25 pairs it is unlikely that there will be sufficient information to move the estimates of      
   

  effectively 

away from the initial default values of 1/600.  If there are informative priors for      
   

 , it is unlikely there 

is sufficient information to move away from the starting informative priors.   

4.  To drastically reduce the sample size, it is likely that the matching process must be modeled in detail 

as in Lahiri and Larsen (2005) or Scheuren and Winkler (1993).  It seems that such modeling will need 

two additional layers of likelihood equations and estimation algorithms. 

5.  Without additional marginal information (from additional files), it is unlikely that is straightforward to 

pull apart (x, y) pairs that have been brought together erroneously.  Subject matter specialists may be able 

to supply some edit rules that also allow us to pull apart erroneous (x, y) pairs. 



6.  Being able to use appropriate third-party data (an unusual situation) could reduce matching error 

(somewhat).  In the reduced-matching-error situation, the statistical adjustments for matching error would 

work (somewhat) better. 

7.  Software for to implement steps 1-5 of the supervised EM procedure is a straightforward modification 

of Winkler (2002, 2006a) and also allows interactions and convex constraints.  The basic procedures due 

to the application of the Chipperfield et al. (2011) are approximately equivalent to reducing the errors 

from 8% with the Obs data to 6% with the first set of processed data Pr1.  This is not a sufficient 

reduction in error for valid analysis on Pr1 because it would not approximate an analysis on Orig. 

8.  If we bring in edit/imputation restraints, this should improve error.  We obtain additional restraints 

from subject matter specialists or certain external restraints (such as used in Winkler 2008, 2010 from 

administrative data).  If we further bring in a few crude distributional restraints, then we hope to reduce 

the error in the resultant processed file Pr2 to as low as 4% (which we also do not believe is suitably low 

for analytic purposes).  The software, a somewhat straightforward modification/hybrid of the software 

from Winkler (2002) and Winkler (2010), has not yet been written. 

9.  Other procedures beyond the combination of Chipperfield et al. (2011) and edit/imputation are almost 

certainly needed.  The most likely initial candidate for expanding methods is the type of statistical 

matching methods due to D’Orazio et al. (2006) and Winkler (2009). 

 

5.  Concluding Remarks 

The procedures of Chipperfield et al. (2011) appear to be effective with very simple types of discrete data.  

The methods of previous authors were never intended for discrete data.  In particular the methods of 

Goldstein et al. (2009, 2012) do not easily extend.  Extending the methods for adjusting statistical 

analyses for linkage error is likely to necessitate much more detailed modeling of the matching process 

(to drastically reduce sample sizes in the ‘truth’ follow-up), additional modeling of distributions in 

contingency tables and the effects of linkage error, edit/imputation methods using additional knowledge 

from third-party files or subject-matter experts, and possibly ideas from statistical matching (D’Orazio et 

al. 2006). 

 
1/   This report is released to inform interested parties of (ongoing) research and to encourage discussion (of work in 

progress).  Any views expressed on (statistical, methodological, technical, or operational) issues are those of the 

author(s) and not necessarily those of the U.S. Census Bureau.   
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